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we boost to the speed of light the AdS3 brane black hole solution of Emparan et al. [1]
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1. Introduction

The Randall-Sundrum model [2, 3] offers a new way, alternative to the Kaluza-Klein com-

pactification, to achieve lower dimensional gravity at large distances. The model is realized

by cutting Anti-de Sitter (AdS) space with a codimension-one brane, where gravity is lo-

calized. Depending on its tension, the brane can have the geometry of Minkowski, de Sitter

(dS) or Anti-de Sitter space. Of course, the phenomenologically most interesting case is

that of a minkowskian 3-brane. However, other configurations have a profound theoretical

interest. In the present paper we will be concerned with AdS branes, and we will focus in

particular on the case of a 2-brane in a 3 + 1 dimensional bulk.

The mechanism of gravity localization works in very different ways depending on the

brane tension. For a supercritical tension (leading to a dS brane), the brane is acceler-

ating in the AdS bulk, so that the AdS boundary is hidden behind a Rindler horizon. A

brane observer sees a spectrum of Kaluza-Klein gravitons that contains a zero mode and a

continuum of massive modes separated from the zero mode by a mass gap. If we decrease

the brane tension, the gap reduces and the spectrum eventually collapses, for a Minkowski

brane, to a continuum that still starts from a zero mode. If we keep lowering the tension

we obtain a AdS brane, and the brane observer can now see the boundary of the bulk
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AdS space and its infinite volume. This implies that the zero mode of the graviton is not

normalizable and - strictly speaking - we do not expect to see localized gravity any more.

By continuity, however, if the brane AdS radius is large enough gravity should still appear

localized at least in some regime. This is precisely what happens in the locally localized

gravity model of Karch and Randall [4]. In this case brane gravity looks like usual mass-

less gravity from distances of the order of the bulk AdS radius all the way to distances

much larger than the brane AdS radius. At much larger scales, however, some deviation

emerges, showing that the graviton has actually an (ultrasmall) mass. For this reason, the

Karch-Randall is especially interesting: its low energy regime describes a consistent model

of massive gravity that starts with a generally covariant action.

The first exact solution for a localized source in the context of the Karch-Randall model

has been presented in [5]. This solution is a gravitational shock wave, the gravitational field

of a massless particle. The solution of [5] allowed to derive a number of properties of the

locally localized gravitational field, including the couplings to matter of the Kaluza-Klein

modes of the graviton.

In general a shock wave solution can be found in two different ways. A first possibility

is to solve directly Einstein’s equations for a null source. In this case, the “cut and paste”

trick of Dray and ’t Hooft [6] is especially useful. The second option is to start from the

gravitational field of a massive particle at rest, and then boost the particle to the speed of

light while sending its mass to zero, so that the momentum of the particle remains finite.

This technique was used in the original work by Aichelburg and Sexl [7].

In the case of a AdS4 3-brane studied in [5] only the first technique could be used, since

no solution for a massive particle on the AdS4 brane is known.1 In the lower dimensional

case of a AdS3 brane, however, solutions associated to brane localized matter were found

by Emparan et al. [1, 9]. These solutions are obtained by cutting the AdS C-metric (that

describes a particle in AdS4 space attached to a string that accelerates it [10]) with a AdS3

brane.

For this reason, in this paper we will study shock waves in the lower dimensional

case of a AdS3 2-brane embedded in a AdS4 bulk. This will allow us to use both of the

techniques described above. In section 3 we will derive the shock wave on the AdS3 brane

starting directly from a relativistic source and using Dray and ’t Hooft’s technique. Then,

in section 4, we derive the shock wave solution by boosting the AdS3 brane black hole of

Emparan et al. [1]. In order to derive this result, we compute the metric that corresponds

to boosting to the speed of light the AdS C-metric in a direction orthogonal to the string.

To our knowledge, this is a new solution to Einstein equations, not present in the existing

literature.

Surprisingly enough, the two solutions of sections 3 and 4 do not agree with each other.

This is our main result, and we will discuss the origin of this discrepancy in section 5.

One of the most interesting aspects of the Randall-Sundrum model is that it is con-

jectured to enjoy a dual interpretation in terms of a conformal field theory (CFT) coupled

1The only such solution explicitly known in this case is the bulk black string discussed e.g. in [8], that

however corresponds to a source that extends through the whole bulk.
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to gravity. According to this duality, the classical dynamics in the AdSd+1 bulk cut by a

brane describes the quantum dynamics of the dual CFT, in the planar limit of a large N

expansion, coupled to classical gravity in d dimensions. This implies that solutions of clas-

sical d + 1 dimensional Einstein equations can be mapped into solutions of d-dimensional

Einstein equations that include a CFT stress-energy tensor considered at the quantum level

in the planar limit.

The conjectured duality has passed several tests, such as those of [11, 12]. Some of

these tests concern the case of a AdS brane: in a series of papers [13 – 16] the generation of

an ultralight mass for the graviton has been explained in the CFT picture as a quantum

effect of the coupling of the CFT to gravity, similarly to what happens in 1+1 dimen-

sional Quantum Electrodynamics where a mass for the photon is generated by quantum

effects [17].

In section 5 we will discuss the CFT interpretation of the different solutions found in

sections 3 and 4. As we will see, the origin of these different solutions can be traced back

to the fact that, for a AdS brane, the CFT on the brane does not encode all of the bulk

degrees of freedom, but only part of them. The remaining part of bulk degrees of freedom

can be mapped onto a CFT that lives on the boundary of the bulk AdS space. As we will

see, the two different solutions of section 3 and 4 can be argued to emerge from the fact

that the CFT at the boundary of AdS4 are in different states.

2. Shock wave on AdS3

Let us start by reviewing the shock wave geometry in AdS3. This metric has been found by

Sfetsos [18] by solving directly Einstein equations for a null source. More recently Cai and

Griffiths [19] have recovered this solution by boosting a conical singularity in AdS3 while

sending the mass to zero. Both methods give the same result, that can be represented as

follows. We start from four dimensional space with coordinates Z0, Z1, Z2, Z3 and metric

ds2 = −dZ2
0 + dZ2

1 + dZ2
2 − dZ2

3 . Empty AdS3 (with AdS radius ℓ3) is the hyperboloid

−Z2
0 +Z2

1 +Z2
2 −Z2

3 = −ℓ2
3. It is possible to write the AdS3 metric in light cone coordinates

u, v, χ as follows

Z0 =
v − u

1 − uv/ℓ2
3

,

Z1 =
u + v

1 − uv/ℓ2
3

,

Z2 = ℓ3
1 + uv/ℓ2

3

1 − uv/ℓ2
3

sinhχ ,

Z3 = ℓ3
1 + uv/ℓ2

3

1 − uv/ℓ2
3

cosh χ , (2.1)

so that the metric is

ds2
Empty AdS3

=
4 du dv

(

1 − uv/ℓ2
3

)2 + ℓ2
3

(

1 + uv/ℓ2
3

1 − uv/ℓ2
3

)2

dχ2 . (2.2)
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In terms of these coordinates, the shock wave associated to a particle with momentum

p moving along the null trajectory u = 0 reads2 [18, 19]

ds2
Shock AdS3

= ds2
Empty AdS3

+ 2
p ℓ3

M3
e−|χ| δ (u) du2 . (2.3)

The shockwave in this case represents a deficit angle in the background space. Since gravity

in three dimensions is not dynamical, this solution has topological nature.

3. Shock wave on AdS3 brane embedded in AdS4 space

In this section we use the Dray and ’t Hooft technique [6] to derive the metric describing

a shock wave on a AdS3 brane (with AdS radius ℓ3) embedded in AdS4 space (radius ℓ4).

Our starting point is empty AdS4, that we describe as the hyperboloid −W 2
0 + W 2

1 +

W 2
2 + W 2

3 − W 2
4 = −ℓ2

4 embedded in a five-dimensional space with metric ds2 = −dW 2
0 +

dW 2
1 + dW 2

2 + dW 2
3 − dW 2

4 . A convenient choice of coordinates is the following

W0 =
ℓ4/ℓ3

sin (z/ℓ3)
Z0 ,

W1 = ℓ4
cos (z/ℓ3)

sin (z/ℓ3)
,

W2 =
ℓ4/ℓ3

sin (z/ℓ3)
Z1 ,

W3 =
ℓ4/ℓ3

sin (z/ℓ3)
Z2 ,

W4 =
ℓ4/ℓ3

sin (z/ℓ3)
Z3 , (3.1)

where Z0, . . . , Z3 are given in eq. (2.1).

In this coordinate system AdS4 is foliated into AdS3 slices

ds2
AdS4

=
ℓ 2
4

ℓ 2
3 sin2 (z/ℓ3)

[

ds2
AdS3

+ dz2
]

, (3.2)

where ds2
AdS3

is the same as in equation (2.2). Slices of constant z cut AdS3 spaces with

radius ℓ = ℓ4/ sin (z/ℓ3). In particular, we are interested in a brane with curvature ℓ3 so

that we place it at z0, where z0 is defined by

sin (z0/ℓ3) = ℓ4/ℓ3 . (3.3)

The Karch-Randall construction requires the full metric to be Z2-symmetric across the

brane. This can be achieved by replacing z → |z| + z0 in the metric above, so that (3.2)

becomes [20]

ds2
KR =

ℓ 2
4

ℓ 2
3 sin2 [(|z| + z0) /ℓ3]

[

ds2
AdS3

+ dz2
]

. (3.4)

2Our convention in the definition of the d-dimensional Planck mass is that Einstein equations read

Gµν = Tµν/Md−2

d .
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Now we introduce our source: the only nonvanishing component of the stress energy

tensor of a massless particle with momentum p moving along the line χ = 0, u = 0, z = 0,

reads

T particle
uu =

2 p

ℓ3
δ(u)δ(z)δ(χ) . (3.5)

For such a source, and following Dray and ’t Hooft [6], we look for the shock wave metric

in the form (see also the appendix)

ds2
Shock KR = ds2

KR − 4 ℓ2
4

ℓ2
3 sin2 [(|z| + z0) /ℓ3]

f (z, χ) δ (u) du2 , (3.6)

where the equation for f (z, χ) reads

∂2
zf − 2

ℓ3
cot [(|z| + z0) /ℓ3] ∂|z|f +

1

ℓ2
3

(

∂2

∂χ2
− 1

)

f =
p

M2
4 ℓ3

δ(χ)δ(z) . (3.7)

Defining the variable ζ ≡ z/ℓ3, and decomposing f(ζ, χ) =
∫ ∞
−∞ dq eiqχ ψq(ζ) we get

∂2
ζ ψq − 2 cot (|ζ| + ζ0) ∂|ζ|ψq − (1 + q2)ψq =

p

2πM2
4

δ(ζ) . (3.8)

The solution of this equation [21, 22] is a linear combination of

cos (|ζ| + ζ0) sinh [q (|ζ| + ζ0)] − q sin (|ζ| + ζ0) cosh [(q (|ζ| + ζ0)] (3.9)

and

cos (|ζ| + ζ0) cosh [q (|ζ| + ζ0)] − q sin (|ζ| + ζ0) sinh [(q (|ζ| + ζ0)] . (3.10)

Next, we require our solution to be regular at the AdS4 boundary, and hence we impose

ψq(|ζ| + ζ0 = π) = 0 to get

ψq (ζ) = Nq {cos (|ζ| + ζ0) sinh [q (|ζ| + ζ0 − π)] − q sin (|ζ| + ζ0) cosh [q(|ζ| + ζ0 − π)]} .

(3.11)

The normalization constant Nq can be found by integrating (3.8) on a small interval around

ζ = 0, so that the final expression for the shock wave reads

f (ζ, χ) = − p ℓ3

2π M2
4 ℓ4

∫ +∞

0
dq

cos qχ

(1 + q2) sinh [q (ζ0 − π)]
× (3.12)

×{cos (|ζ| + ζ0) sinh [q (|ζ| + ζ0 − π)] − q sin (|ζ| + ζ0) cosh [q (|ζ| + ζ0 − π)]} .

In particular, the function f on the brane takes the form

f(ζ = 0, χ) = − p

2πM2
4

∫ ∞

0
dq

cos(qχ)

1 + q2
[cot ζ0 + q coth [q(π − ζ0)]] . (3.13)

Using the theorem of residues, we can show that for ζ0 6= 0, eq. (3.13) can also be written

as

f (ζ = 0, χ) = − p α2

2πM2
4

∞
∑

n=1

n

n2 α2 − 1
e−n α|χ| , (3.14)

where we have defined the dimensionless quantity

α ≡ π

π − ζ0
. (3.15)

We can now check the validity of this result by considering some special limits where

the shock wave metric is already known.
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3.1 Two limits: flat brane and no bulk

The limit of a flat brane (ℓ3 → ∞) is obtained by sending ζ0 → 0. In this case we find

from (3.13)

f(ζ =0, χ) = − p

4πM2
4

[

π e−|χ| cot ζ0|ζ0→0−|χ| e−|χ|−1−2 cosh |χ| log(1−e−|χ|)
]

+ O (ζ0) ,

(3.16)

where cot ζ0 =
√

ℓ 2
3 − ℓ 2

4 /ℓ4.

In order to deal with the divergent term cot ζ0|ζ0→0 we set χ = R/ℓ3 (where R is the

proper radial distance from the source) before sending ℓ3 → ∞ while keeping R finite. In

this limit the metric reads

f(ζ = 0, χ) =
p

4πℓ4M
2
4

[

π |R| + ℓ4 log(R/ℓ3)
2
]

, (3.17)

plus a divergent term (∝ ℓ3) that is however independent of the coordinates and can be

set to zero by a coordinate transformation.

The first term in (3.17) is the contribution from 2 + 1 gravity and is associated to

the deficit angle generated by a mass in 2 + 1 dimensions [23, 24], while the second term

has the same form as a 3 + 1 dimensional shock wave [7]. Eq. (3.17) coincides with the

result previously found in [25]. Comparing the above result (3.17) with the known 2 + 1

dimensional Minkowski shockwave (f = p |R| /2M2
3 [23]), we obtain the expression of the

effective 2 + 1 dimensional Planck mass for a flat brane: M ℓ3→∞
3 = 2 ℓ4 M2

4 .

One more check can be made by taking the limit in which the bulk disappears. This

is achieved by sending ℓ4 → 0 (i.e. ζ0 → 0) and M 2
4 → ∞ while keeping the product

2 ℓ4 M 2
4 = M ℓ4→0

3 finite. In this limit we find cot ζ0 ≃ ℓ3/ℓ4, and using (3.16) we obtain

f(ζ = 0, χ) = − ℓ3 p

2M ℓ4→0
3

e−|χ|, (3.18)

which, as expected, matches (2.3) once we set M ℓ4→0
3 = M3.

3.2 Mass spectrum

Following a procedure analogous to that of [5], we can find the mass spectrum for the

graviton. In order to do this, we decompose the shock wave in Kaluza-Klein modes by

writing (3.8) as

∂2
ζ ψq − 2 cot (|ζ| + ζ0) ∂|ζ|ψq = −m2ℓ2

3 ψq , (3.19)

where m2ℓ2
3 = −1 − q2. Here, the values of q are given by the poles in (3.13)

qn = i
π n

(π − ζ0)
, n = 1, 2, 3, . . . . (3.20)

Thus our result is

m2
n ℓ2

3 = −1 +
π2 n2

(π − ζ0)2
. (3.21)

We see that, analogously to the Karch-Randall case [4] of a AdS4 brane in AdS5 bulk,

there is no zero mode of the graviton as long as ζ0 6= 0. Moreover, this technique allows
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us to prove that the mechanism that leads to an ultralight graviton is at work also in the

lower dimensional case. In the case of a AdS4 brane in a AdS5 bulk, indeed, the lightest

mode of the graviton goes as
√

3/2 ℓ5/ℓ
2
4 (1 + O (ℓ5/ℓ4)) for ℓ5 ≪ ℓ4 [4]. In our case of a

AdS3-brane, for ζ0 ≪ 1, the mass of the ultralight mode reads m2
UL ≃ 2 ζ0/πℓ2

3, i.e.

mUL ≃
√

2 ℓ4

π ℓ3

1

ℓ3

(

1 + O
(

ℓ4

ℓ3

))

. (3.22)

The scaling mUL ∝ ℓ
1/2
4 /ℓ

3/2
3 is in agreement with expectations from AdS/CFT argu-

ments [13 – 16]. Indeed, since the phenomenon of mass generation for the graviton is

associated to gravitational dynamics, we must have m2
UL ∝ 1/M3. Since ℓ3 is the only

other scale on the CFT side of the problem, then, m2
UL ∝ 1/M3 ℓ3

3. Finally, m2
UL ∝ g∗

where g∗ ∝ M2
4 ℓ2

4 is the number of degrees of freedom in the CFT. Putting together these

factors (and using M3 ∝ M2
4 ℓ4) we readily recover the scaling (3.22).

Following an argument analogous to that of [5], we can also find the value of the

effective 2 + 1 dimensional Planck mass for finite ℓ3, defined as the coupling to matter of

the ultralight mode of the graviton. Comparing (3.14) to (2.3) we find

M3 (ℓ3) = 2M2
4 ℓ3 ζ0

(

1 − ζ0

2π

)

≃ 2M2
4 ℓ4

[

1 − 1

2π

(

ℓ4

ℓ3

)

+ O
(

(

ℓ4

ℓ3

)2
)]

. (3.23)

3.3 The CFT energy momentum tensor

One of the main motivations for the study of the gravitational field of localized sources

in the Randall-Sundrum model is the dual interpretation of such solutions as quantum-

corrected metrics [26, 27]. Once the brane metric is given, it is straightforward to derive

the 2 + 1 dimensional stress-energy tensor that supports it. Such tensor contains two

contributions: the first is just the stress energy tensor of the original, classical sources. A

second contribution is associated to gravitational backreaction of the CFT modes that are

excited by the gravitational field of the classical source.

The general expression for the 2+1 energy momentum tensor is derived in the appendix,

eq. (A.16). For the shock wave (3.13) we find that the expression for the CFT tensor reads

TCFT
uu = −2M3

ℓ 2
3

δ(u)

[

1 − ∂ 2

∂χ2

]

f(χ) = −α2

4π

M3

M2
4 ℓ 2

3

p
1

sinh2(αχ/2)
δ(u) (3.24)

where we see that, as a consequence of Lorentz contraction, the stress energy tensor of

the CFT is also localized on the null surface u = 0. At variance with the stress energy

tensor of the classical source, however, the CFT tensor has a nontrivial profile along the χ

coordinate.

The effect of the CFT in the solution (3.13) can also be interpreted as a running of the

effective Planck constant [5]. In this case, the expression (3.23) corresponds to the infrared

limit of the 2 + 1 dimensional Planck mass, and its running is induced by the effect of the

Kaluza-Klein modes in eq. (3.14).
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Figure 1: The Karch-Randall black hole construction of [1]: we show here a constant time slice

of AdS4; the singularity at y → −∞ [see eq. (4.1)] corresponds to the location of the particle, the

dashed line describes the string that is pulling the particle towards the AdS4 boundary. The shaded

area corresponds to the region that is suppressed by the cut-and-paste Randall Sundrum procedure.

4. Boosting the AdS C-metric

Let us now turn to the second way of getting a shock wave metric, i.e. by boosting to the

speed of light the gravitational field of a massive particle while sending to zero the mass of

the particle, so that the particle momentum stays finite.

4.1 The AdS C-metric

Our starting point is the AdS3-brane black hole solution given in [1]. In that paper,

a black hole solution is found by observing that a particle on the Randall-Sundrum (or

Karch-Randall) brane has to be accelerated with respect to the bulk. In order to generate

such an acceleration, it is necessary to attach the particle to a string pulling it towards the

AdS boundary (we sketch this construction in figure 1). The metric corresponding to this

setup is known in four dimensional AdS space3 and is called AdS C-metric [10]. In order

to construct a brane black hole solution it is then sufficient to cut the bulk AdS space with

a brane at the location of the particle, throwing away the part of space that contains the

string, and gluing to the brane a Z2-symmetric copy of the part of AdS space that has

been retained.

To obtain the brane shock wave associated to the black hole solution of [1], we will

eventually boost the whole system of string+particle in a direction that is transverse to

that of the string, in such a way that the particle remains on the surface of the brane, while

sending the mass of the particle to zero.

3For a study of analogous metrics in higher dimensions see [28].
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Our starting point is the AdS C-metric, that can be written in the form

ds2 =
1

A2 (x − y)2

[

−H (y) dt2 +
dy2

H (y)
+

dx2

G (x)
+ G (x) dφ2

]

,

H (y) = λ − k y2 +
mA

4π M2
4

y3 ,

G (x) = 1 + k x2 − mA

4π M2
4

x3 , (4.1)

with λ > 0 and k = −1, 0, +1. Here m is interpreted (at least in the small m regime) as

the mass of the particle and A is its acceleration.

The brane is located at x = 0 [1], so that the brane induced metric reads (after some

simple coordinate redefinition, and setting λA2 ≡ 1/ℓ2
3)

ds2 = −
(

r2

ℓ2
3

− k − m

4π M2
4 r

)

dt2 +

(

r2

ℓ2
3

− k − m

4π M2
4 r

)−1

dr2 + r2 dφ2 (4.2)

where the periodicity of φ depends on m as described below. Our first task is to choose the

sign of k. To do this, we consider the fact we will eventually send the parameter m to zero

while boosting the source to the speed of light. In order for the boost to be well defined,

we need the background coordinate system to cover the whole AdS3. This forces us to

choose the branch with k = −1, since both branches k = 0 and k = +1 have a horizon at

r = ℓ3

√
k and do not cover all of AdS3.

So from now on we will set k = −1 in the metric (4.1). For a detailed interpretation

of this metric see e.g. [29 – 31]. For the present work, all we need to know is that −1/y is

a radial coordinate from the particle (that is located at a singularity at y → −∞) while

x is roughly interpreted as cos θ in polar coordinates. The x coordinate is bound to be

larger than y, and the AdS4 boundary is the surface x = y. The equation G (x) = 0 has

three roots, out of which only one (for m > 0) is positive, let us call it x2. The fact that

x is interpreted as cos θ implies that x = x2 corresponds to a polar axis. Since we will

eventually introduce the Randall-Sundrum brane at x = 0, cutting away the region x < 0,

we only care about the region 0 < x < x2. In order to avoid a conical singularity on

the axis x = x2 then we impose that the angle φ ranges between 0 and 4π/ |G′ (x2)| ≃
2π

[

1 − mA/4πM2
4 + O

(

(mA/M2
4 )2

)]

.

For m = 0 the above metric (4.1) describes empty AdS4. To see this, we remind that

AdS4 can be embedded in five dimensional space with coordinates W0, W1, W2, W3, W4,

as discussed in section 3. In terms of these coordinates, the metric (4.1) with m = 0 is

given by

W0 =
1

A
√

λ

√

y2 + λ

x − y
cos

(√
λ t

)

,

W1 =
1

A
√

λ + 1

y + λx√
λ (y − x)

,
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W2 =
1

A

√
1 − x2

x − y
cos φ ,

W3 =
1

A

√
1 − x2

x − y
sin φ ,

W4 =
1

A
√

λ

√

y2 + λ

x − y
sin

(√
λ t

)

. (4.3)

The AdS4 radius is

ℓ4 =
1

A
√

λ + 1
. (4.4)

For finite m, the metric has a singularity at y → −∞, that corresponds, in the limit

of small m, to a particle whose worldline follows

W̄0 = ℓ4

√
λ + 1√

λ
cos

(√
λ t

)

,

W̄1 =
ℓ4√
λ

,

W̄2 = W̄3 = 0 ,

W̄4 = ℓ4

√
λ + 1√

λ
sin

(√
λ t

)

. (4.5)

The AdS3 brane will eventually be located at x = 0 [1], corresponding to the plane

W brane
1 = ℓ4/

√
λ. By comparing this with expression (3.1), or equivalently by looking

at (4.2), we find that the AdS3 curvature of the brane will be given by 1/ℓ3 = A
√

λ.

4.2 The boosted AdS C-metric

We now perform a boost along the (W0, W2) direction (so that the W1 coordinate, and

therefore the location of the brane, is left unchanged), by replacing

W0 → γ (W0 − β W2) ,

W2 → γ (W2 − β W0) , (4.6)

with γ = 1/
√

1 − β2. Finally, we take the limit β → 1, m → 0 with m γ = p finite.

To find the boosted result we use the same procedure described in e.g. [32]: first, we

expand the metric at first order in m and we replace m → p/γ, then we send γ → ∞ while

using the identity

lim
β→1

γ f (γ (W0 − β W2)) = δ(W0 − W2)

∫ ∞

−∞
f (w) dw , (4.7)

that can be easily proved by treating γ f (γ (W0 − β W2)) as a distribution [32].

In order to boost properly our metric, we have to take into account also the deficit

angle in φ. In the limit m → 0, we have indeed 0 < φ <∼ 2π
(

1 − mA/4πM2
4

)

, so that before

expanding at first order in m we have to perform the redefinition φ → φ/
(

1 − mA/4πM2
4

)

.

This way, φ ranges on its natural interval [0, 2π[.
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The final result is

ds2 = ds2
AdS4

+
p A

π M2
4

ℓ4 (λ + 1) δ (W0 − W2) d (W0 − W2)
2 (4.8)

×
[

−
√

λ + 1 +
W4

ℓ4

√
λ tanh−1

(√
λ ℓ4 + W1√
λ + 1 W4

)

− W3

ℓ4
tan−1

(
√

λ + 1 W3

ℓ4 −
√

λ W1

)

]

.

This is one of the main results of our paper: it represents the metric (in the embedding

coordinates W0, . . . , W4) describing a null particle in AdS4 with radius ℓ4 subject to an

acceleration A = 1/ℓ4

√
λ + 1 transverse to the direction of motion of the particle.

We now obtain the shock wave metric on the AdS3 brane by using the coordinate

system (3.1), where we set z = z0 = ℓ3 ζ0 so that sin ζ0 = ℓ4/ℓ3, and then using for the

Z0, . . . , Z3 coordinates the light cone system (2.1). The resulting metric is

ds2 = ds2
Empty AdS3

− p

π M2
4 cos2 ζ0

× (4.9)

×
[

π cot ζ0 sinh |χ| +
(

2 − cosh χ log
cosh χ + 1

cosh χ − 1

)]

δ(u)du2.

We can bring this result to a form that makes comparison with the pure AdS3 case easier.

Following [19], we write the metric (4.9) in terms of the embedding coordinates (2.1), so

that it reads

ds2 = −dU dV + dZ2
2 − dZ2

3 + (4.10)

− p

2π M2
4 cos2 ζ0

[

π cot ζ0
|Z2|
ℓ3

+

(

2 − Z3

ℓ3
log

Z3 + ℓ3

Z3 − ℓ3

)]

δ(U) dU2 ,

with U = Z0 − Z1 and V = Z0 + Z1. We then perform the transformation

U → U ,

V → V − p

2M2
4

cot ζ0

cos2 ζ0

Z3

ℓ3
Θ (U) −

(

p

4M2
4

cot ζ0

cos2 ζ0

)2 U

ℓ2
3

Θ (U) ,

Z2 → Z2 ,

Z3 → Z3 +
p

4M2
4

cot ζ0

cos2 ζ0

U

ℓ3
Θ (U) , (4.11)

where Θ is the Heaviside step function. This transformation has the effect of replacing |Z2|
with |Z2| − Z3 in equation (4.10), or equivalently to bring (4.9) to the form

ds2 = ds2
AdS3

+
p

π M2
4 cos2 ζ0

[

π cot ζ0 e−|χ| −
(

2 − cosh χ log
cosh χ + 1

cosh χ − 1

)]

δ(u)du2 .

(4.12)

This is the final expression for the brane metric obtained by boosting the solution (4.1).

The first term in the above metric is the contribution from the deficit angle. It corresponds

to the term in e−|χ| in eq. (2.3). The second term has the same form of the AdS shock

wave in 3 + 1 dimensions [33]. Its presence reflects the fact that the black hole solution

of [1] contains one term that corresponds to the classical AdS3 conical singularity and a
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”quantum” term that resembles that of the 3 + 1 dimensional AdS black hole and dresses

the conical singularity with a horizon.

As a check of the validity of the result above, it is straightforward to show that the

limits of a flat brane and of no bulk give the same resulting brane metric as that shown in

section 3.1.

4.3 The CFT energy momentum tensor

By using the procedure described in subsection 3.3, we can find the energy momentum

tensor associated to the CFT

TCFT
uu = − 1

π cos2 ζ0

M3

M2
4 ℓ2

4

p
1

sinh2 χ
δ (u) . (4.13)

This expression can be found also by boosting the energy momentum tensor [27] associated

to the CFT around the brane-localized black hole of [1]

Tα
β ∝ 1

r3
diag (1, 1, −2) . (4.14)

The expression (4.13) is different from the induced CFT stress energy tensor found

in section 3.3, but its form is extremely similar to it, the only difference being on the

dependence on χ rather than on α χ/2 (and indeed the two expressions coincide for ζ0 =

π/2, i.e. α = 2).

It is worth remarking that also for this solution one can interpret the effect of the

CFT as running of the effective Planck mass. In this case, the running of the Planck scale

appears to be different from that observed in section 3.

5. Discussion: two shock waves on the AdS3 brane

We have constructed the metric associated to a null source on a AdS3 brane embedded in

a AdS4 bulk in two different ways.

In section 3 we have obtained this metric by directly solving Einstein equations for a

null source. The resulting brane shockwave is given in equation (3.14). In order to obtain

this result, we have effectively decomposed the shock wave in Kaluza-Klein modes, imposing

that the solution is regular at the AdS4 boundary of our bulk. This allowed us to find the

expression for the masses of the Kaluza-Klein graviton (3.21) and to prove that, similarly

to the case of a AdS4 brane in AdS5 bulk, there is no zero mode of the graviton, even if

there is an ultralight mode, whose Compton wavelength is much larger than ℓ3. The reason

for the absence of a zero mode was discussed in [4]: an observer on the AdS3 brane can see

all of the AdS4 bulk, including its boundary. The ”would be” zero mode of the graviton

is divergent (and non normalizable) on the bulk AdS4 boundary, and therefore decouples

from the brane matter. The absence of a massless mode of the graviton is confirmed by

the fact that for large χ the shockwave goes as e−α|χ|, with α = π/ (π − ζ0) > 1 whereas

for a theory of massless gravity in AdS3 one expects f ∝ e−|χ|.

In section 4, then, we have obtained a shock wave by boosting to the speed of light the

AdS3 brane black hole of [1] while sending its mass to zero. The resulting brane metric
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is given in (4.12). It is apparent that the expressions (3.14) and (4.12) do not coincide!

In particular, the boost of the brane black hole metric of [1] seems to excite a massless

graviton, since at large distances f ∝ e−|χ|.

Where does this different behavior come from? The answer lies in the different behavior

on the AdS4 boundary. In the case discussed in section 3, we have imposed by hand that

the function f goes to zero as ζ → π− ζ0. A section of the metric given by (3.6) and (3.12)

at ζ = π− ζ0 − ǫ (that in the absence of shock wave gives an AdS3 space) gives an induced

metric that is that of AdS3 with radius ℓ ≃ ℓ4/ǫ with a correction associated to the brane

shockwave that is proportional to ǫ3:

ds2
eqs (3.6), (3.12) |ζ=π−ζ0−ǫ =

1

ǫ2

[

ds2
EmptyAdS3

+ O
(

ǫ3
)]

. (5.1)

On the other hand, the boosted metric (4.8), cut at a surface z = (π − ǫ) ℓ3 (equivalent

to ζ = π − ζ0 − ǫ), reads, for ǫ ≪ 1,

ds2
eq (4.8) |ζ=π−ζ0−ǫ =

1

ǫ2

{

ds2
EmptyAdS3

+
2 p A ℓ2

4

π M2
4 ℓ3

(λ + 1) ×

×
[√

λ cosh χ tanh−1

(

1√
λ + 1 cosh χ

)

+ sinhχ tan−1

(
√

λ + 1 sinhχ√
λ

)]

δ (u) du2 + O (ǫ)

}

,

(5.2)

that contains a nontrivial term as ǫ → 0. It is possible to verify that eq. (4.8) is actually a

solution to the shock wave equation (3.7). However, such a solution cannot be decomposed

à la Kaluza-Klein, since the individual modes that make this solution are not square-

summable close to the AdS4 boundary.

We conclude that both eqs. (3.6), (3.12) and eq. (4.8) give a legitimate shock wave on

the brane, however they have radically different behavior at the bulk boundary. We now

turn to the CFT interpretation of this phenomenon.

5.1 The CFT interpretation

It is of course interesting to interpret the existence of these two different shock wave

solutions in terms of the CFT dual of the Karch-Randall model.

Subsequently to the paper [4], that first observed the absence of a zero mode for the

graviton in this setting, it has been shown [13 – 16] that the ultralight mass for the graviton

can be generated by a CFT with appropriate (transparent) boundary conditions on a AdS

background. The shock wave of section 3 displays the properties that we expect to find in

massive gravity.

On the other hand, the existence of the AdS black hole solution of [27] associated to

the AdS C-metric should also be explained by the existence of a CFT with transparent

boundary conditions on the boundary of AdS3. This has not been shown in a rigorous

way, since there is no explicit computation of the stress energy tensor of a CFT around a

conical singularity in AdS3. However, the k = −1 branch of eq. (4.2) (that we have used to
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generate the shock wave of section 4) can be continuously deformed into the branch with

k = +1, that can be shown to correspond to a BTZ black hole [34] corrected by a CFT

with transparent boundary conditions [35 – 37].

So it seems that both the shock waves of section 3 and 4 are obtained by endowing

the same source (a null particle in AdS3) with the quantum corrections of a CFT with

the same (transparent) boundary conditions. Now: why the two solutions are different?

Here we argue that the difference between these solutions emerges from the fact that the

dual of the Karch-Randall model contains actually two CFTs. The two different solutions

corresponds to situations where the second CFT is in a different state.

The CFT structure of the Karch-Randall model is more complicated than that of

a simple CFT in interaction with gravity. Indeed, the CFT “on the brane” does not

describe all of the bulk degrees of freedom, but only those degrees of freedom that lie in

the holographic domain of the brane, i.e. whose holographic projection lies on the brane.

As discussed in [38], for a brane located at z = 0 in the coordinates (3.4), the holographic

domain corresponds to the region 0 < z < πℓ3/2. The remaining part of bulk is mapped

into a CFT that lives on the boundary of AdS4. The two CFTs communicate though the

common boundary of the spaces where they live (the equator of S2 ×ℜ of figure 1).

We can now associate the shock wave described in section 3 to the case where the

second CFT is in its ground state. Indeed, the metric (5.1) induced on the fictitious

brane at z = (π − ǫ) ℓ3 is pure AdS3 metric for ǫ → 0. This corresponds to putting the

second CFT in its vacuum state. We stress that this is the situation where the dynamical

generation of a mass for the graviton is observed.

The metric (5.2), on the other hand, gives a nontrivial metric at the AdS4 boundary,

that corresponds to a deformation of the second CFT. It is interesting to notice that in

this case the long distance behavior of the shockwave corresponds to the one associated

to a massless graviton. A possible interpretation is that the deformation of the boundary

conditions leaves the second CFT in an excited state, effectively changing the boundary

conditions of our brane CFT. Since the boundary conditions of the CFT living in the AdS3

space are crucial in determining whether the graviton mass is generated (see e.g. [14]), it is

natural to imagine that this different state prevents the gravitational Higgs phenomenon

from taking place.

At this point, it is also important to note that the original construction of [1] contained

two branes. The second brane was introduced to insure that the graviton spectrum contains

a zero mode (however, in the spirit of the Karch-Randall model, the presence of this second

brane is not necessary). Remarkably, the second brane was located at z = πℓ3/2 in the

coordinates (3.4), that is exactly at the boundary of the holographic region found in [38].

This allows us to find a second CFT interpretation of the brane black hole of [1] and of the

shock wave found in section 4. In this interpretation, the second CFT does not exist at

all (since the corresponding part of bulk has been thrown away), and the graviton remains

massless.

These results show explicitly how different metrics can be obtained when we deform

the second CFT. More in general, they show that the choice of boundary conditions in the

CFT can affect strongly the nature of the quantum corrected metrics of localized objects.
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They also raise a natural question: what happens if we ”unboost” the metric found in

section 3? In other words, suppose that now we see the shock wave geometry as the metric

of an extremely light but not massless particle. In this case one can go to the rest frame for

this particle, and ask what the metric will look like. Since we have found two shock waves,

it is natural to expect the existence of two branches of solutions associated to finite mass,

brane localized objects. It would be very interesting to study the nature of the objects

belonging to the second branch.

To sum up, in this paper we have seen the power of gravitational shock waves in the

study of the properties of brane gravity, by showing that there are (at least) two different

solutions to Einstein equations for a null source moving along a AdS3 brane embedded

in a AdS4 bulk. From the bulk perspective, the origin of these two different solutions is

clearly explained by different conditions at the AdS4 boundary of the bulk. In particular,

one of the shock waves excites a profile of the bulk graviton that is not normalizable from

the three-dimensional point of view. The CFT interpretation of these two solution is more

subtle, and we argued that the two different solutions correspond to putting the AdS4

boundary CFT in a different state.
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A. Shock wave on AdSn−1 brane embedded in AdSn space

In this appendix we work out all the relevant formulae needed for the study of gravitational

shock waves associated to particles localized on a AdSn−1 brane embedded in AdSn space.

Consider the following metric ds̃ 2
n = Ω2(z)ds2

n where

ds2
n = 2A(u, v) dudv + g (u, v) hij(x) dxidxj + dz2 , (A.1)

where i, j = 1, 2, . . . , n − 3, and u and v are null coordinates. We also assume that there

exist matter fields with energy momentum tensor given by

T̃ = 2 T̃uv(u, v, x, z) dudv + T̃uu(u, v, x, z) du2 + T̃vv(u, v, x, z) dv2 +

+T̃ij(u, v, x, z) dxidxj + T̃zz(u, v, x, z) dz2 . (A.2)

Now consider a massless particle located at u = 0 and moving with the speed of light in the

direction of v. Dray and ’t Hooft showed that the effect of this particle on the background

geometry can be described by the metric (A.1) and the energy momentum tensor (A.2) for

u < 0 and by making the shift v → v + f(x, z) in (A.1) . The resulting metric reads [6, 18]

ds2
n = 2A(u, v + Θf) du

(

dv + Θ f,i dxi + Θ f,z dz
)

+ F (u, v + Θ f, x, z) du2

+g (u, v + Θ f) hij (x) dxidxj + dz2 . (A.3)

– 15 –



J
H
E
P
1
0
(
2
0
0
7
)
0
7
2

where Θ = Θ(u) is the Heaviside step function. Using the coordinate transformation û = u,

x̂ = x, ẑ = z and v̂ = v + Θ f we get (after suppressing all hats)

ds2
n = 2A (u, v) dudv + F (u, x, z) du2 + g (u, v) hij (x) dxidxj + dz2 , (A.4)

where F = −2A (u, v) f (x, z) δ and δ ≡ δ(u) is the Dirac-delta function.

The general strategy for obtaining the shock wave equation is to start by calculating

the components of Ricci tensor for the ds2
n metric, then we add the contribution from the

conformal factor.4 The final results are

R̃uu =
n − 3

2

(

g,uA,u

gA
− g,uu

g
+

g2
,u

2g2

)

+

[

2A,uv

A
+

n − 3

2

g,uv

g
+

A

g
∆ h + A∂2

z + 2A
∂2

z Ω

Ω

+ (n − 2)A
∂zΩ

Ω
∂z + 2A(n − 3)

(

∂zΩ

Ω

)2

− 2A,uA,v

A2
− n − 3

2g2
g,ug,v

+
n − 3

2Ag
(g,ug,v + g,vA,u)

]

fδ +

(

A,vv

A
−

A2
,v

A2
+

n − 3

2

g,vA,v

gA

)

f2δ2 , (A.5)

and

R̃uv =

(

A,uA,v

A2
− A,uv

A
+

n − 3

4

g,ug,v

g2
− n − 3

2

g,uv

g

)

+

(

A2
,v

A2
− A,vv

A
− n − 3

2

g,vA,v

gA

)

fδ

−∂2
zΩ

Ω
A − (n − 3)

(

∂zΩ

Ω

)2

A , (A.6)

where ∆h denotes the laplacian associated to the metric hij .

Now we consider AdSn space foliated into AdSn−1 slices. In addition, we introduce a

brane at z = 0 with the AdSn space being Z2 symmetric across the brane. The form of

the metric is given by [5]

ds̃ 2
Adsn

= Ω2(|z|)
[

4 du dv
(

1−uv/ℓ 2
n−1

)2 +ℓ 2
n−1

(

1+uv/ℓ 2
n−1

1−uv/ℓ 2
n−1

)2
(

dχ2 + sinh2 χdΩ2
n−4

)

+ dz2

]

,

(A.7)

where dΩ2
n−4 is the metric on the (n − 4)-dimensional sphere, and the function Ω(|z|) is

given by Ω (|z|) = ℓn/ℓn−1 sin ((z0 + |z|)/ℓn−1) where ℓn−1 and ℓn are the radii of curvature

of the brane and bulk space respectively. Direct calculations show that the first bracket

in (A.5) vanishes identically. In addition, A,v|u=0 = g,v|u=0 = 0. The only nonvanishing

component of the energy momentum tensor of a massless particle on the brane is given by

T̃ particle
uu =

2p

ℓn−3
n−1

√
h

δ(u) δ(z) δ(χ) δ(θ1) . . . δ(θn−4) . (A.8)

The background energy momentum tensor is given by

T background
MN = −ΛgMN − σ δµ

Mδν
Ngµνδ(z) , (A.9)

4Given the metric ds̃ 2

n = Ω2(z)ds2

n, the relation between R̃σν and Rσν is given by R̃σν = Rσν −
ˆ

(n − 2)δα
σ δβ

ν + gσνgαβ
˜

Ω−1 (∇α∇βΩ) +
ˆ

2(n − 2)δα
σ δβ

ν − (n − 3)gσνgαβ
˜

Ω−2 (∇αΩ) (∇βΩ) .
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where M,N = u , v , 1, 2, . . . , n−3 , z ; µν = u , v , 1, 2, . . . , n−3, and Λ and σ are the bulk

and brane cosmological constants respectively. Plugging (A.8) and (A.9) into Einstein’s

equations R̃µν − g̃µν R̃/2 = T̃µν/Mn−2
n and noticing that guu = −2fguvδ(u) we obtain [18]

R̃uu =
1

Mn−2
n

T̃ particle
uu − 2 f (x, z) δ (u) R̃uv , (A.10)

and

R̃uv =
1

Mn−2
n

(

T̃uv −
guv

n − 2
T̃

)

, (A.11)

where Mn is the n-dimensional Planck mass.

Now, substituting (A.5) and (A.6) into (A.10) we get

∂2
zf + (n − 2)

∂|z|Ω

Ω
∂|z|f +

1

ℓ2
(∆ h + 3 − n) f =

p

Mn−2
n

1

ℓn−3
n−1

√
h

δ(z)δ(χ)δ(θ1) . . . δ(θn−4) .

(A.12)

By solving this equation it is possible to find gravitational shock wave solutions asso-

ciated to brane null sources in the Karch-Randall model of any dimensionality.

The above formulae allow us to find the relationship between bulk and brane cosmolog-

ical constants in terms of the bulk and brane radii. One can find such relation from the u−v

component of Einstein’s equations (A.11) using Tuv = T bulk
uv + T brane

uv = −Λguv − σguvδ(z)

and T α
α = −nΛ − (n − 1)σδ(z). Substituting (A.6 ) into (A.11) we get

−A

[

−2δ(z)

ℓn−1
cot(z0/ℓn−1) +

n − 1

ℓ2
n−1 sin2 ((|z| + z0)/ℓn−1)

]

=
1

Mn−2
n

guv

[

−Λ

(

1 − n

n − 2

)

− σ

(

1 − n − 1

n − 2

)

δ(z)

]

. (A.13)

Noticing that guv = AΩ2 we find

Λ = −(n − 1)(n − 2)Mn−2
n

2ℓ 2
n

, (A.14)

and

σ = 2 (n − 2)Mn−2
n

√

1

ℓ 2
n

− 1

ℓ 2
n−1

. (A.15)

Finally, we can compute the CFT energy momentum tensor associated to a given

shock wave solution. In order to do this, we compute the n−1 dimensional Einstein tensor

built with the above metric restricted to the brane, and identify it with the CFT energy

momentum tensor times Mn−3
n−1 , where Mn−1 is the Planck mass on the brane. This way

we obtain

TCFT
uu =

2 (n − 3) Mn−3
n−1

ℓ 2
n−1

[

∂2

∂χ2
− 1

]

f(χ) δ(u) . (A.16)
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